NOAA Pipeline/BUFR/CBUFR, schedule, clear flag and cloud-cleared filter

November 2001 AIRS science team meeting

NOAA/NESDIS

Mitch Goldberg

Walter Wolf

Lihang Zhou

Yanni Qu

Murty Divarkarla

Topics

- Deliverable AIRS Products
- NOAA Pipeline
- Hardware Upgrade
- Post-launch schedule
- Clear Detection
- Cloud cleared radiances CBUFR
- Validation of NRT products via gridded datasets
- Apply clear detection algorithm on cloud cleared radiances.

NWP AIRS Products

- Thinned Radiance files
 - a) center of 3 x 3 from every other golf ball, ~300 channels. + AMSU and HSB (8 mbytes per orbit)
 - b) 200 principal component scores using same thinning as a)
 - c) Every 2nd golfball with ~300 channels plus all AMSU and HSB (all 3 x 3)
 - d) cloud cleared a) and b)
 - e) Full resolution AMSU and HSB
 - * all include cloud indicator
- Full resolution level 2 products temperature, moisture and ozone. (Level 2 PGE running in NRT since July 2001)

Current List of Users

- •NCEP
- •ECMWF
- •Met. Office
- Meteo-France
- •Goddard DAO
- •Meteor. Service of Canada

NOAA Pipeline

- The center FOV of every other golf ball in BUFR format is being delivered to the NWP centers in near-real time.
- One week of simulated level 1B and level 2 data have been delivered to the DAO.
- Nine FOVs of every other golf ball in BUFR format for three granules has been delivered to the DAO.

NOAA Pipeline

- ECMWF model forecast data in GRIB format is delivered to UMBC on a weekly basis.
- ECMWF model forecast data in GRIB format for December 2000 has been delivered to JPL.
- AIRS/AMSU/HSB data matched to the ARM CART site is delivered on a daily basis to UW-Madison.
- AIRS/AMSU/HSB level 1b radiances and retrievals matched to radiosonde locations for validation.

NOAA Pipeline

- Daily Global Grids (0.5 x 2.0 resolution) of
- observed radiances (center fov)

 initial and final cloud cleared radiances
 principal component scores of above
 retrievals from level 2 support file
 NCEP and ECWMF forecasts
 clear simulated radiances from NCEP and ECMWF

Key to validation of NRT products as well as generation of coefficients.

Binary Grid files created each day ~ 2 GB

Name	Size	Туре	Modified
⊯ EC20011011.asc	64,753KB	ASC File	10/12/01 6:03 PM
EC20011011.desc	64,753KB	DESC File	10/12/01 6:04 PM
FF20011011.asc	97,001KB	ASC File	10/12/01 5:22 AM
🖼 FF20011011.desc	97,001KB	DESC File	10/12/01 5:24 AM
🚂 FI20011011.asc	89,579KB	ASC File	10/12/01 8:03 AM
🚂 FI20011011.desc	89,579KB	DESC File	10/12/01 8:05 AM
∰ GG20011011.asc	80,621KB	ASC File	10/12/01 5:26 AM
∰ GG20011011.desc	80,621KB	DESC File	10/12/01 5:28 AM
<u>s</u> gs_ec20011011.asc	72,431KB	ASC File	10/12/01 11:13 AM
<u>s</u> gs_ec20011011.desc	72,431KB	DESC File	10/12/01 11:15 AM
🚅 gs20011011.asc	72,431KB	ASC File	10/12/01 11:13 AM
🚂 gs20011011.desc	72,431KB	DESC File	10/12/01 11:15 AM
<u></u>	89,579KB	ASC File	10/12/01 8:10 AM
∭a IN20011011.desc	89,579KB	DESC File	10/12/01 8:12 AM
☑ L2RET20011011.asc	316,339KB	ASC File	10/12/01 1:21 PM
🚂 L2RET20011011.desc	316,339KB	DESC File	10/12/01 1:31 PM
PCD20011011.asc	60,146KB	ASC File	10/12/01 5:31 AM
PCD 20011011.desc	60,146KB	DESC File	10/12/01 5:33 AM
PCFI20011011.asc	54,003KB	ASC File	10/12/01 8:06 AM
<u>∍</u> PCFI20011011.desc	54,003KB	DESC File	10/12/01 8:08 AM
<u>∍</u> PCIN20011011.asc	54,003KB	ASC File	10/12/01 8:13 AM
■ PCIN20011011.desc	54,003KB	DESC File	10/12/01 8:14 AM
PCS20011011.asc	60,146KB	ASC File	10/12/01 5:29 AM
<u>∍</u> PCS20011011.desc	60,146KB	DESC File	10/12/01 5:30 AM

All channels ~ 10 GB

Deliverable AIRS BUFR Files

- Originally based off TOVS BUFR Format
- One BUFR file per granule
- Center Field of View for every other golf ball
- 281 AIRS Channels, 15 AMSU Channels, and 4 HSB Channels
- Each file is approximately 650 KB

Updates to AIRS BUFR Files

- Center Field of View for every golf ball might become clearest Field of View.
- Principal Component BUFR File.
- Cloud/Clear Flag determinations.
- Separate Cloud Cleared BUFR file
- Visible channels

Cloud clearing significantly increases yield

Hardware Upgrade

- NASA NPP project has provided to NOAA 96
 CPUs (SGI ORIGIN 3800 R12K) for MODIS and AIRS processing. (64 MODIS ,32 for AIRS) 8
 TB storage
- Server SGI Origin 3200 dual processor 6 TB
- 20 RS10000 + 32 RS12000 CPUs dedicated to AIRS
- At least 6 TB for AIRS

Post Launch Schedule

- 2 months— Establish routine transfer of rate-buffered data from EDOS to NOAA computer.
- 3 months -- updated level 1b software from JPL (as early as possible)
- 4 months delivery of "first look" thinned radiance products to NWP centers
- 7 months -- routine distribution of validated thinned level 1b radiance products to NWP sites
- •12 months preliminary report on impact of AIRS in NWP.
- •12 months -- routine distribution of level 2 products.

Clear Detection

Detected Clear FOVS using AIRS --- ONLY 0.5% residual clouds!!

Clear Detection tests

Ocean test 1: Brightness temperature (BT) of 965.323cm-1 (AIRS ch914) is greater than 268k (day/night)

Ocean test 2: The difference between the SST minus BT of 2616.095cm-1(AIRS ch2333) is less than 0.9 (night)

Ocean test 3: The difference between BT of ch2333 (2616.095) and the predicted 2616 from 8 microns is less than 0.5. (night)

Ocean test 4: The difference between BT of ch2333 (2616.095) and the predicted 2616 from 11 microns is less than 0.5. (night)

Ocean test 5: The difference between the forecast SST and the SST predicted from airs window channels is less than 0.2 (day/night)

Land test 1: The difference between the BT of 2390.824cm-1(AIRS ch2112) and the one predicted from AMSU channel 1 to 7, is less than 3.0

Land test 2: Spatial variability of 2390.824cm-1(AIRS ch2112) is less than 0.0030 mW

Land test 3: The difference between the BT of 2445.918cm-1 (AIRS ch2145) and which predicted from long-wave channels (1218.359cm-1, 1228.086cm-1, 1236.297cm-1, 1251.213cm-1), is less than zero Land test 4: The difference between the forecast surface temperature and the one predicted from AIRS window channels is less than 10

Land test 5: The difference between the short-wave channel (2558.224cm-1 ch2250) and long-wave channel (900.562cm-1, ch760), is less than 10

Approach to selecting "good" threshold: use cumulative probability distribution and estimate of percent clear at the AIRS fov resolution

281 CH, OBS(Grid) — Sim(MF) CLR NSAMPLES : 217 281 CH, OBS(Grid) — Sim(RAOB) CLR NSAMPLES : 217

Routine Validation

- Web-based validation of radiance and retrieval products accessible by science team and NWP users.
- Compare retrievals with NCEP and ECMWF forecasts/analyses and radiosondes.
- Compare radiances with clear simulated radiances using NCEP and ECMWF geophysical parameters.
- Based on gridded datasets and radiosonde collocations.

Cloud Cleared Filter

CASE 3

CASE 3 + 2 K SST check

1 K SST Check

0.5 K SST Check

Observed 1 K SST check

CC (case 3) with 1 K SST

CC (all) 1 K SST check

CC (case 3) with 1 K SST

Retrieval Validation

Improvements to validation tools

- Apply to granule level.
- Display vertical channel and retrieval cross sections f(fov #, time, longitude)
- Display spectra bias and rms for given region
- Develop offline web browser capability (ftp gridded files and display on local machine)
- Monitor time series of bias and standard deviation (radiances and retrievals).

Validation using NOAA-16 operational radiosonde match files

- NOAA-16 has a similar equator crossing time to AQUA.
- Matching AIRS Golfballs to NOAA-16 matchups
 ~ 300 per day since June 01.
- Soon matching AIRS retrievals
- NOAA-16 matchup files includes ATOVS retrievals, radiances and radiosonde.
- Add closest forecast and cloud cleared radiances from the grid files.

281 CH, OBS(Grid) — Sim(RAOB) INCL NSAMPLES : 1287 281 CH, OBS(Grid) — Sim(RAOB) FICL NSAMPLES : 1287 281 CH, OBS(Grid) - Sim(RAOB) INCL NSAMPLES : 767 281 CH, OBS(Grid) - Sim(RAOB) FICL NSAMPLES : 649

Pre-Summary

- Development of the near realtime system is going extremely well.
- Busy working on NRT validation.
- Working on strategy for updating coefficients (regression and eigenvectors)
- Gridded datasets are the way to go.
- Should be able to provide NWP users with first look radiance products at launch +3 with "blessed" products at launch + 12
- Level 2 products -- launch + 12.

Improvements to regression

- Regression coefficients now based on initial cloud cleared radiances.
- Plan to use ECMWF for training.
- Indications that ECMWF forecast accuracy may be better than NCEP especially for stratospheric temperature and upper tropospheric moisture.

26 mb (6 fwhm)

60 mb (16)

180 mb (72)

300 mb (180)

Final - Summary

- Strong case for using ECMWF forecast for training.
- Larrabee will show more examples.